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Chapter 1

Introduction

1.1 Introduction

MCMAS is a Model Checker for Multi-Agent Systems (MAS). MCMAS takes in input a MAS specification
and a set of formulae to be verified, and it evaluates the truth value of these formulae using algorithms based
on Ordered Binary Decision Diagrams (OBDDs [1]). Whenever possible, MCMAS produces counterexamples
for false formulae and witnesses for true formulae. MCMAS allows the verification of a number of modalities,
including CTL operators, epistemic operators, operators to reason about correct behaviour and strategies, with
or without fairness conditions.

MCMAS can also be used to run interactive, step-by-step simulations. Additionally, a graphical interface is
provided as an Eclipse plug-in which includes a graphical editor with syntax recognition, a graphical simulator,
and a graphical analyser for counterexamples.

Multi-Agent Systems are described in MCMAS using a dedicated programming language derived from the
formalism of interpreted systems [5]. This language, called ISPL (Interpreted Systems Programming Language),
resembles the SMV language in that it characterises agents by means of variables and represents their evolution
using Boolean expressions.

The remainder of this document is organised as follows:

• Section 2.1 is a simple tutorial providing a short introduction to the formalism of interpreted systems, a
flavour of ISPL and basic MCMAS commands.

• Section 3.1 describes the command line options for the MCMAS executable.

• Section 3.2 contains the complete ISPL syntax.

• Section 3.3 describes the graphical interface.

• Section 3.4 presents a detailed description of the theoretical background of MCMAS.

1.2 For the impatient

System requirements:

• Tested platforms: x86 compatible 32 bit or 64 bit processor; ppc and MacIntel.

• Operating system: Linux, Mac OS X, Windows using Cygwin;

• Compiler: flex 2.5.4 or higher, GNU bison 2.3 or higher, GNU g++ 4.0.1 or higher;

• Eclipse 3.2 or higher with Java 1.7 (optional, for the graphical interface).

Please feel free to contact us at mcmas@imperial.ac.uk if you want to run MCMAS on different architec-
tures/configurations.

Installation steps
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1. (Windows platform only) Install cygwin and the packages g++, flex and bison on Windows XP/Vista/7.
Detailed instructions can be found from http://www.cygwin.com/1.

2. Extract MCMAS sources with tar and type make and you should obtain the executable mcmas.

3. (Optional) Install Eclipse plug-in for the graphical editor by copying the file org.mcmas.ui_1.0.0.jar

files to the plugin/ directory of your Eclipse installation. Install Graphviz (http://www.graphviz.org/).
Then run Eclipse with the option “-clean” for the first time and specify the paths to directories containing
mcmas and dot (a program in Graphviz), and the bin directory in Cygwin if you use Windows, in the
MCMAS preference.

Running mcmas

• ./mcmas -h from the command line. See the examples in the examples directory.

• Graphical interface: start Eclipse; if the plugin has been recognised, you should be able to create a new
ISPL project and create a new ISPL file.

1.2.1 For the very impatient

We might be able to provide a pre-compiled binary version for your system, please contact us at mcmas@

imperial.ac.uk.

1Please contact us if you want to compile MCMAS using Visual Studio, we have an experimental version of MCMAS for this.
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Chapter 2

Tutorial

2.1 Tutorial

2.1.1 How to describe a system of agents?

Various techniques and languages exist to describe a system of agents. MCMAS adopts and extends the
formalism of interpreted systems [5] using the dedicated ISPL language. We distinguish between two kinds
of agents: “standard” agents, and the environment agent. The environment is used to describe boundary
conditions and infrastructures shared by “standard” agents and it is modelled similarly to standard agents (see
below). Not all models require an environment agent, which is therefore optional in ISPL.

In brief, in MCMAS each agent (including the environment) is characterised by:

1. A set of local states (for instance the states “ready” or “busy” for a receiver).

2. A set of actions (for instance “sendmessage” or “open channel”).

3. A rule describing which action can be performed by an agent in a given local state. We call this rule a
protocol1.

4. An evolution function, describing how the local states of the agents evolve based on their current local
state and on other agents’ actions.

Local states. Local states are defined in terms of local variables: as an example, consider a printer with
two sensors, one sensor for toner (which could be high or low), and one sensor for paper (which could be
full or empty). In this case, the agent printer has four possible local states corresponding to all the possible
combinations of values of toner and paper. Local states are private, i.e., each agent can observe only its own
local states, and all the other parameters discussed below (protocol and evolution function) cannot refer to
other agents’ local variables. The only exception is that all “standard” agents can “peek” at some variables of
the environment. These variables in the environment that agent i can peek are called local observable variables
to agent i. They can be referenced in agent i’s protocol and evolution function, and hence are part of extended
local state of the agent. However, their value can only be changed by the environment, i.e., “standard” agent is
only allowed to read their value. Additionally, the epistemic accessibility relation of an agent (see Section 3.4)
is based on the agent’s extended local states. Intuitively, an agent “knows” something in a state of the system
if this something is true in all the states of the system in which its extended local states remain the same. In
the rest of the manual, we use the words “local state” to denote “extended local states”.

Actions. Each agent (including the environment) is allowed to perform some actions, for instance send a
message. It is assumed that all actions performed are visible by all the other agents.

Protocols. Protocols describe which actions can be performed in a given local state. As local states are
defined in terms of variables, the protocol for an agent is expressed as a function from variable assignments
to actions. In ISPL protocols are not required to be exhaustive: it is sufficient to specify only the variable
assignments relevant to the execution of certain actions, and introduce a catch-all assignment by means of the
keyword Others (see below). Protocols are not required to be deterministic: it is possible to associate a set of

1Not to be confused with the notion of protocol in networking.
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Communication channel
Sender Receiver(Environment)

Figure 2.1: The bit transmission problem.

actions to a given variable assignment. In this case the action to be performed is selected non-deterministically
in this set.

Evolution functions. The evolution function for an agent describes how variable assignments change as
a results of the actions performed by all the other agents. For instance, the evolution function for a printer
could prescribe that, if the current local state (or a variable composing the local state) is “ready” and an agent
performs the action “send print job”, then the next local state of the printer is “busy”. Formally, the evolution
function is a function returning a “next” assignment to the local variables of an agent as a function of the
“current” set of assignments to local variables, the observable variables of the environment, and the actions
performed by the agents. A global evolution function is computed by taking the conjunction of all the agents’
evolution functions.

The description of a MAS using ISPL is completed by the declaration of a set of initial states expressed as
assignments to local variables. If more than one state satisfies the assignments, then the initial state is selected
randomly. The system evolves from this set of initial states in accordance to the protocols and the evolutions
functions, and this process is used to compute the truth value of formulae specified by the user. Fairness
conditions can also be specified in ISPL, to rule out unwanted behaviour (e.g. a communication channel being
continuously noisy or a printer being locked forever by a single agent)

In the next sections we will provide two concrete examples and their encoding in ISPL. We refer to Section 3.4
for a more formal definition of ISPL and its semantics.

2.1.2 A concrete example: the bit transmission problem and its encoding in ISPL

In the bit-transmission problem [5] a sender S wants to communicate the value of a bit to a receiver R, by using
an unreliable communication channel (see Figure 2.1). In this example, the channel may drop messages, but
cannot tamper messages; also, at any given time, the channel may transmit messages in one direction but not
in the other.

One mechanism to achieve communication is as follows: S immediately starts sending the bit to R, and
continues to do so until it receives an acknowledgement from R. R does nothing until it receives the bit; from
then on, it sends messages acknowledging the receipt to S. S stops sending the bit to R when it receives the
first acknowledgement from R, and the protocol terminates here.

To encode this example in the formalism of interpreted systems we first introduce an Environment agent,
whose ISPL code is as follows:

Agent Environment

Vars:

state : {S,R,SR,none};

end Vars

Actions = {S,SR,R,none};

Protocol:

state=S: {S,SR,R,none};

state=R: {S,SR,R,none};

state=SR: {S,SR,R,none};

state=none: {S,SR,R,none};

end Protocol

Evolution:
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state=S if (Action=S);

state=R if (Action=R);

state=SR if (Action=SR);

state=none if (Action=none);

end Evolution

end Agent

In this case, the Environment does not have observable variables (consequently, this section does not appear
in the code), and it only has one variable state representing the availability of the communication channel (e.g.
SR represents the fact that both directions are open for communication). Thus, the Environment agent has 4
possible local states. The Environment can perform four actions (in this case we use the same names for local
states and actions): transmit the message from Sender only, from both Sender and Receiver, from Receiver
only, or don’t transmit any message. The protocol in this case simply prescribes that in every state any action
can be chosen (non-deterministically) by the agent Environment. The Evolution function is defined as follows:
take the first line below Evolution:, this is read as “the next state will be S if the (current) Action of the
Environment is S”. Essentially, the evolution function simply records in the local state of the Environment the
last action performed. In general, a line in the evolution function is triggered when the Boolean condition to
the right of the if keyword becomes true.

We encode the agent Sender by means of the following ISPL code:

Agent Sender

Vars:

bit : { b0, b1}; -- The bit can be either zero or one

ack : boolean; -- This is true when the ack has been received

end Vars

Actions = { sb0,sb1,nothing };

Protocol:

bit=b0 and ack=false : {sb0};

bit=b1 and ack=false : {sb1};

ack=true : {nothing};

end Protocol

Evolution:

(ack=true) if (ack=false) and

( ( (Receiver.Action=sendack) and (Environment.Action=SR) )

or

( (Receiver.Action=sendack) and (Environment.Action=R) )

);

end Evolution

end Agent

Notice that this is a “standard” agent and no observable variables are present. Two variables are declared
in the Vars section: an enumeration type bit encoding the value of the bit the Sender wants to send, and
a Boolean variable ack encoding whether or not an acknowledgement has been received (comments can be
added by escaping the commented text with the prefix --). Therefore, the Sender has four possible local states
corresponding to all the possible combination of values of bit and ack. Three actions are declared for the
sender: send bit 0, send bit 1, and do nothing. The Protocol section for the Sender defines how these actions
are performed. In general, each line of the protocol starts with a Boolean condition on the values of the variables,
followed by a colon, followed by a list of actions that are allowed when the Boolean condition is true. The lines
of the protocol do not need to be exhaustive: if they are not, the special keyword Other needs to be used to
specify what to do when none of the Boolean condition is true (for instance by introducing a “nothing” action
as in this case). The evolution function in this case is straightforward: the Sender changes the value of the
variable ack only if it is false and an acknowledgement is received from the Receiver (and the variable bit does
not change its value); notice how other agents’ actions are scoped with the syntax construct AgentName.Action.
If no scoping prefix is added, the value is intended to refer to the agent in which the condition is declared. As in
the case of protocols, the list of Boolean conditions does not need to cover all possible cases: MCMAS assumes
that, if none of the Boolean conditions is true, then the local state of the agent does not change.

We encode the agent Receiver by means of the following ISPL code:
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Agent Receiver

Vars:

state : { empty, r0, r1 };

end Vars

Actions = {nothing,sendack};

Protocol:

state=empty : {nothing};

(state=r0 or state=r1): {sendack};

end Protocol

Evolution:

state=r0 if ( ( (Sender.Action=sb0) and (state=empty) and

(Environment.Action=SR) ) or

( (Sender.Action=sb0) and (state=empty) and

(Environment.Action=S) ) );

state=r1 if ( ( (Sender.Action=sb1) and (state=empty) and

(Environment.Action=SR) ) or

( (Sender.Action=sb1) and (state=empty) and

(Environment.Action=S) ) );

end Evolution

end Agent

Only one enumeration variable is declared for this agent, representing whether or not the bit has been received,
and its value. Agent Receiver can perform two actions: either do nothing (if state is empty), or send an
acknowledgement if a bit has been received. Receiver evolves to state r0 if it was in state empty and the sender
is performing the action of sending bit 0, and the Environment is enabling transmission either in both direction
(Environment.Action=SR), or at least from the sender (Environment.Action=S). The evolution to state r1 is
similar.

After the declaration of Environment and agents, five more sections are required to complete the ISPL input
to MCMAS: Evaluation, InitStates, Groups, Fairness, and the list of formulae to be verified:

Evaluation

recbit if ( (Receiver.state=r0) or (Receiver.state=r1) );

recack if ( ( Sender.ack = true ) );

bit0 if ( (Sender.bit=b0));

bit1 if ( (Sender.bit=b1) );

envworks if ( Environment.state=SR );

end Evaluation

InitStates

( (Sender.bit=b0) or (Sender.bit=b1) ) and

( Receiver.state=empty ) and ( Sender.ack=false) and

( Environment.state=none );

end InitStates

Groups

g1 = {Sender,Receiver};

end Groups

Fairness

envworks;

end Fairness

Formulae

AF(K(Sender,K(Receiver,bit0) or K(Receiver,bit1)));

AG(recack -> K(Sender,(K(Receiver,bit0) or K(Receiver,bit1))));

end Formulae
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The Evaluation section introduces the Boolean variables that are used in Fairness conditions and in the
formulae to be verified. These Boolean variables are defined by Boolean expressions over the local states of the
agents. For instance, the proposition recbit is true if the local state of the Receiver is r0 or r1.

The section InitStates declares the set of initial states by using a Boolean expression over local states. In
this case, there are two possible initial states, one where the bit value is b0 and one where the bit value is b1,
and with ack=false and all the other local states for Receiver and Environment set to their empty value.

The section Groups allows for the definition of groups of agents, that can be used in the verification of group
modalities in the Formulae section.

The section Fairness contains a list of Boolean expressions: intuitively, it is required that all the formulae
listed in this section must be true infinitely often along all executions. For instance, in the example above it is
required that the proposition envworks is true infinitely often, meaning that the environment cannot avoid the
state SR forever.

Note. If no group modality is required by any formula, the group section may be left empty, or the entire
section can be removed from the ISPL code. This same applies to fairness section as well.

The section Formulae contains the list of formulae to be verified. Formulae are built using CTL temporal
operator, epistemic operators, operators to reason about correct behaviour and strategies. In the example listed
above, the first formula is read as “along all paths, at some point in the future the sender will know that the
receiver knows that the bit value is either 0 o 1”. This formula is true in this particular case (see below) because
of the fairness condition envworks. If this fairness condition is commented out, then the formula becomes false
(because the Environment could forbid communication indefinitely). The second formula claims that “it is
always true that, if an acknowledgement was received, then the sender knows that the receiver knows the value
of the bit”. This formula is true even if the fairness condition is removed.

The example presented in this section and additional formulae can be found in the text file
examples/bit_transmission_protocol.ispl in the source distribution of MCMAS.

2.1.3 Verification and simulation

In this section we present how to run MCMAS from the command line to perform verification and simulation
of the example presented in the previous section.

The minimal MCMAS execution consists in the invocation of the executable followed by the name of the
ispl file to be verified:

$ ./mcmas examples/bit_transmission_protocol.ispl

************************************************************************

MCMAS v1.2.2

This software comes with ABSOLUTELY NO WARRANTY, to the extent

permited by applicable law.

Please check http://vas.doc.ic.ac.uk/software/mcmas/ for the latest release.

Report bugs to <mcmas@imperial.ac.uk>

************************************************************************

examples/bit_transmission_protocol.ispl has been parsed successfully.

Global syntax checking...

Done

Encoding BDD parameters...

Building partial transition relation...

Building OBDD for initial states...

Building reachable state space...

Checking formulae...

Building set of fair states...

Verifying properties...

Formula number 1: (AF K(Sender, (K(Receiver, bit0) || K(Receiver, bit1)))), is TRUE in the model

Formula number 2: (AG (recack -> K(Sender, (K(Receiver, bit0) || K(Receiver, bit1))))), is TRUE in the model

done, 2 formulae successfully read and checked

execution time = 0

number of reachable states = 18
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BDD memory in use = 9018016

In this case, if the syntax is correct, MCMAS simply outputs the result of the evaluation of the formulae
found in the Formulae section of the ISPL file. MCMAS performs a detailed syntax check of the input file
and the verification process is not invoked if a syntax error is present. In case of errors, MCMAS terminates
with a warning and details of the error. As an example, if the semicolon in the definition of state in the agent
Environment is deleted, MCMAS terminates with the following error:

$ ./mcmas examples/bit_transmission_protocol.ispl

************************************************************************

MCMAS v1.2.2

This software comes with ABSOLUTELY NO WARRANTY, to the extent

permited by applicable law.

Please check http://vas.doc.ic.ac.uk/software/mcmas/ for the latest release.

Report bugs to <mcmas@imperial.ac.uk>

************************************************************************

examples/bit_transmission_protocol.ispl:9.16: syntax error, unexpected LCB, expecting COLON

examples/bit_transmission_protocol.ispl has syntax error(s).

A number of options are available to compute counterexamples, to increase the verbosity level, etc. These
options are explained in detail in Section 3.1.

One important feature of MCMAS is the possibility of running simulations. The simulation environment is
started with the option -s from the command line:

$ ./mcmas -s examples/bit_transmission_protocol-2.ispl

************************************************************************

MCMAS v1.2.2

This software comes with ABSOLUTELY NO WARRANTY, to the extent

permited by applicable law.

Please check http://vas.doc.ic.ac.uk/software/mcmas/ for the latest release.

Report bugs to <mcmas@imperial.ac.uk>

************************************************************************

examples/bit_transmission_protocol-2.ispl has been parsed successfully.

Gloabl syntax checking...

Done

Encoding BDD parameters...

--------- Initial state ---------

Agent Environment

state = S

Agent Sender

ack = false

bit = b0

Agent Receiver

state = empty

----------------------------

Is this the initial state? [Y(es), N(ext), E(xit)]:

MCMAS stops at this point waiting for input from the user. It is possible to go through all the possible
initial states with the keys N (Next) and P (Previous). User Y to select an initial state:

--------- Initial state ---------

Agent Environment

state = S
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Agent Sender

ack = false

bit = b0

Agent Receiver

state = empty

----------------------------

Is this the initial state? [Y(es), N(ext), E(xit)]: Y

Enabled transtions:

1 : Environment : none; Sender : sb0; Receiver : nothing

2 : Environment : SR; Sender : sb0; Receiver : nothing

3 : Environment : R; Sender : sb0; Receiver : nothing

4 : Environment : S; Sender : sb0; Receiver : nothing

Please choose one, or type 0 to backtrack or -1 to quit:

When a state is chosen, MCMAS outputs the possible transition from that state. Transitions can be chosen by
typing the corresponding number (in the example below transition number two is chosen):

Please choose one, or type 0 to backtrack or -1 to quit:

2

--------- Current state ---------

Agent Environment

state = SR

Agent Sender

ack = false

bit = b0

Agent Receiver

state = r0

----------------------------

Enabled transtions:

1 : Environment : S; Sender : sb0; Receiver : sendack

2 : Environment : R; Sender : sb0; Receiver : sendack

3 : Environment : SR; Sender : sb0; Receiver : sendack

4 : Environment : none; Sender : sb0; Receiver : sendack

Please choose one, or type 0 to backtrack or -1 to quit:

When a transition is chosen, MCMAS displays the new state and the transitions available in the new state.
Notice that it is always possible to backtrack using 0, or to exit using -1.

2.1.4 A more complex example: the protocol of the dining cryptographers

The protocol of the dining cryptographers was introduced in [3]. The original wording from [3] is as follows:
“Three cryptographers are sitting down to dinner at their favourite three-star restaurant. Their waiter

informs them that arrangements have been made with the maitre d’hotel for the bill to be paid anonymously.
One of the cryptographers might be paying for the dinner, or it might have been NSA (U.S. National Security
Agency). The three cryptographers respect each other’s right to make an anonymous payment, but they wonder
if NSA is paying. They resolve their uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer on his right,
so that only the two of them can see the outcome. Each cryptographer then states aloud whether the two coins
he can see – the one he flipped and the one his left-hand neighbour flipped – fell on the same side or on different
sides. If one of the cryptographers is the payer, he states the opposite of what he sees. An odd number of
differences uttered at the table indicates that a cryptographer is paying; an even number indicates that NSA is
paying (assuming that the dinner was paid for only once). Yet if a cryptographer is paying, neither of the other
two learns anything from the utterances about which cryptographer it is.”[3]

Notice that similar versions of the protocol can be defined for any number of cryptographers greater than
three.
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We model an instance of this example with three cryptographers by introducing three agents Ci (i = {1, 2, 3})
to model the three cryptographers, in addition to the environment agent.

The environment is used to select non-deterministically the identity of the payer and the results of the coin
tosses. We introduce three variables for the environment, one for each coin. Also, we introduce an observable
variable to record the result of the utterances (even or odd)2:

Agent Environment

Obsvars:

numberofodd : { none, even, odd };

end Obsvars

Vars:

coin1 : {head,tail};

coin2 : {head,tail};

coin3 : {head,tail};

end Vars

[...]

It is assumed that the environment can perform only one action, the null action. Therefore, the protocol PE

is simply mapping every local state to the null action by means of the Other keyword. The evolution function of
the environment determines the evolution of the observable variable only to record the result of the utterances.

The local states of a cryptographer are composed by four variables representing, respectively, whether
the cryptographer is the payer, the value of the coins, and whether the coins are equal or different. Each
cryptographer can perform one of three actions: say “equal”, say “different”, or do nothing. These actions are
performed in accordance with the protocol derived from the informal description above. The evolution function
for the cryptographers simply updates the variable recording whether or not the coins that can be seen are
equal.

There are 32 possible initial states, corresponding to the possible combinations of coin tosses and payers. In
this example no fairness condition is required and MCMAS can be used to check the characteristic properties of
this example: if there is an odd number of utterances, then someone at the table paid the bill. In this case, it
is also true that a cryptographer did not pay for the dinner, the this cryptographer knows that a cryptographer
paid for it, but he does not know who is the actual payer. This is captured by the following formula:

( (odd and !c1paid) -> (K(DinCrypt1,(c2paid or c3paid) ) ) and

!K(DinCrypt1,c2paid) and !K(DinCrypt1,c3paid) );

where c1paid is an atomic proposition which is true if the first cryptographer paid the dinner (and similarly
for 2 and 3), and odd is an atomic proposition true when there is an odd number of utterances. Conversely, an
even number of utterances implies that all the cryptographers know that the company paid for the dinner. The
following formula captures that the first cryptographer knows this fact:

( (even) -> (K(DinCrypt1,!c2paid) and K(DinCrypt1,!c3paid) ) );

The ISPL code for this example (making use of Lobsvars variables) can be found in the source distribution
under the directory examples.

2In this example, all agents modelling cryptographers can observe this variable. It is a shortcut to define a local observable
variable for all standard agents. See 3.2.1 for more detail.
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Chapter 3

Reference

3.1 Command line options

The command line options are displayed by running MCMAS with the -h option:

$ ./mcmas -h

************************************************************************

MCMAS v1.2.2

This software comes with ABSOLUTELY NO WARRANTY, to the extent

permited by applicable law.

Please check http://vas.doc.ic.ac.uk/software/mcmas/ for the latest release.

Report bugs to <mcmas@imperial.ac.uk>

************************************************************************

Usage: mcmas [OPTIONS] FILE

Example: mcmas -v 3 -u myfile.ispl

Options:

-s Interactive execution

-v Number verbosity level ( 1 -- 5 )

-u Print BDD statistics

-e Number Choose the way to generate reachable state space (1 -- 3, default 1)

-o Number Choose the way to order BDD variables (1 -- 4, default 2)

-g Number Choose the way to group BDD variables (1 -- 3, default 3)

-d Number Choose the point to disable dynamic BDD reordering (1 -- 3, default 3)

-nobddcache Disable internal BDD cache

-k Check deadlock in the model

-a Check arithmetic overflow in the model

-c Number Choose the way to display counterexamples/witness executions (1 -- 3)

-p Path Choose the path to store files for counterexamples

-exportmodel Export model (states and transition relation) to a file in dot format

-f Number Choose the level of generating ATL strategies (1 -- 4)

-l Number Choose the level of generating ATL counterexamples (1 -- 2)

-w Try to choose new states when generating ATL strategies

-atlk Number Choose ATL semantics when generating ATL strategies (0 -- 2, default 0)

-uc Number Choose the interval to display the number of uniform strategies processed

-uniform Use uniform semantics for model checking

-ufgroup Name Specify the name of the group to generate uniform strategies
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-n Disable comparison between an enumeration type and its strict subset

-h This screen

The full list of available options are explained as follows.

• -s: this option invokes the interactive mode execution (see previous section).

• -v Number: this option is used to modify the verbosity level. It is particularly useful to detect the
bottlenecks in large examples and to investigate unexpected behaviours of MCMAS or bugs.

• -u: this option is used to print statistics on OBDDs at the end of the execution. Using this option, it is
possible to estimate memory consumption and the compression level. This options works even if MCMAS
is terminated by ctrl+c.

• -e Number: this option is used to switch between different strategies for the computation of the transition
relation and reachable states. Option 1, 2 and 3 differ on how reachable states are computed internally.

• -o Number: this option is used to switch between different strategies for BDD ordering.

• -g Number: this option groups BDD variables to speed up dynamic BDD reordering: option 1 group two
adjacent BDD variables; option 2 groups BDD variables for each ISPL variable; option 3 groups BDD
variables based on ISPL variables and each agent’s actions, which is the default choice.

• -d Number: this option disables dynamic reordering on BDD variable during the verification process when
Number > 0: option 1 disable the reordering in the whole process; option 2 disables the reordering after
transition relation is built; option 3 switches off the reordering after reachable states are computed, which
is the default choice.

• -nobddcache: this option disables the internal BDD cache. In general, the internal BDD cache reduces
the running time. But in some rare cases, it can slow down the verification.

• -k: this option searches for a deadlock state in the model, where no agents can make progress. If combined
with option -c, a witness execution is generated from an initial state to the deadlock state.

• -a: this option searches for a state in which an arithmetic overflow can occur, i.e., the value assigned to
an bounded integer variable is beyond the upper or lower bound of the variable. A witness execution is
generated if combined with -c.

• -c Number: this option is used to compute counterexamples (for false universal formulae) and witnesses
(for true existential formulae). For each formula for which such computation is possible, option 1 prints a
textual representation on screen; option 2 emits two files: “formulaN .dot” encoding the graphical repre-
sentation of the counterexample/witness path, and “formulaN .info” file containing a detailed description
of the states in the path, where N is the number of the formula; option 3 produces both the textual and
graphical representations.

• -p String: this option allows users to choose a specific directory to store the graphical representations for
counterexamples/witness executions. The default location is the current directory.

• -exportmodel : this option instructs MCMAS to export the generated LTS model from the ISPL file to
the file “model.dot” in Graphviz dot format and the file “model.info”. The LTS model can be displayed
in the graphical interface in the same way as for counterexamples.

• -f Number: this option chooses the level of generating ATL strategies: option 1 generates all strategies
for the outermost ATL operator; option 2 recursively generates all strategies for all ATL operators; option
3 generates only one strategy for the outermost ATL operator; option 4 recursively generates one strategy
for all ATL operators.

• -l: this option forces MCMAS to generate a counterexample for an ATL formula, which is not built by
-c options because the counterexample is an execution tree.

12



• -w: this option force MCMAS to choose a new state that is not visited before when possible at each step
of the generation of ATL strategies.

• -atlk: this option chooses what ATL semantics is used for verification. Semantics 0 is used when no
fariness constraint is present and full observability is assumed. Under fairness constraints, semantics 1
assumes full observability and semantics 2 assumes partial observability (hence uniform strategy). The
details about observability can be found in [2].

• -uc: this option specifies when MCMAS prints the number of uniform strategies that have been processed
during verification. When the number of uniform strategies can be divided by the value specified in this
option without a reminder, MCMAS prints the number to inform users about the progress of verification.
The default value is 10.

• -uniform: this option chooses the uniform strategy semantics defined in [6]. This option will subsume
the option -atlk.

• -ufgroup Name: this option specifies the name of the group when generating uniform strategies. Only
the agents in the group have uniform strategies; others do not have any. If this option is not used, then
all agents have uniform strategies by default.

• -n: this option disallows MCMAS to compare two enumeration types one of which is a strict subset of
the other.

3.2 ISPL syntax

In this section we present the formal syntax of ISPL. Section 3.2.1 provides an overview of the language.
Section 3.2.3 lists the reserved keywords which cannot be used as identifiers. Section 3.2.4 reports the for-
mal grammar of ISPL using a bison-like syntax. See Section 2.1.2 for an informal description of the various
components of an ISPL file.

3.2.1 ISPL overview

A multi-agent system specified in ISPL is composed of an Environment agent and a set of normal agents.
Each agent has a set of local variables and the Environment also has a set of observable variables, which can
be “observed” by other agents. The local states of an agent, each of which contains a valuation of its local
variables (and observable variables if the agent is the Environment), are partitioned into two sets: the set of
green states and the set of red states. The two sets are used to check correct behaviour properties. Every agent
also has a set of actions, a protocol function and an evolution function.

The ISPL specification also contains the definition of initial states, propositions, groups, fairness formulae
and formulae to be checked.

Below is the general structure of a model.

Semantics = MultiAssignment (MA) | SingleAssignment (SA)

Agent Environment

Obsvars:

...

end Obsvars

Vars:

...

end Vars

RedStates:

...

end RedStates

Actions = {...};

Protocol:

...

end Protocol
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Evolution:

...

end Evolution

end Agent

Agent TestAgent

Lobsvars = {...};

Vars:

...

end Vars

RedStates:

...

end RedStates

Actions = {...};

Protocol:

...

end Protocol

Evolution:

...

end Evolution

end Agent

Evaluation

...

end Evaluation

InitStates

...

end InitStates

Groups

...

end Groups

Fairness

...

end Fairness

Formulae

...

end Formulae

Note that all the strings in the structure above (except TestAgent, which is the name of a normal agent)
are reserved keywords. More agents could be defined similarly to TestAgent. The following sections explain
the details of each section of an ISPL file.

Definition of variables

Currently, ISPL allows three types of variables: Boolean, enumeration and bounded integer. Suppose x, y and
y are variables of Boolean, enumeration and bounded integer respectively. They are defined as follows:

x : boolean;

y : {a, b, c};

z : 1 .. 4;

Note that the value of x can be true or false, the value of y is one of a, b and c, and the value of z can
be 1, 2, 3, or 4. The lower bound and the upper bound of z are 1 and 4 respectively. The definition of a
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local/standard variable and the definition of an observable variable are the same. A comparison over Boolean
variables or enumeration variables can only be an equality test, e.g., x = true, y = a, x != false or y !=

b. Bit operations “~” (not), “&” (and), “|” (or), “^” (xor) are allowed for Boolean variables, e.g., ~x or x^x;
Arithmetic operations “=”, “!=”, “<”, “<=”, “>”, “>=” are allowed for bounded integers, e.g., z < 2 or
z >= z ∗ 2− 3. Two enumeration variables are comparable if they have the same type, or one has the type that
is a subset of the type of the other. An enumeration type is a subset of another type if all enumeration values
of the former are included in the latter.

Definition of local observable variables

The local observable variables for an agent are defined in the section Lobsvars:

Lobsvars = { x, y, z};

if x, y and z are standard variables of the environment. If a variable in the environment can be observed by all
agents, there is a way to obtain compact ISPL code: define the variable in a special section Obsvars, instead
of Vars, in the environment and then removed from all agents’ Lobsvars section.

Definition of red states

The red states of a “standard” agent are represented by a Boolean formula over its local variables and local
observable variables. For the environment, the red states are defined over its local variables. That is, all the
local states that satisfy the formula are red, while the other local states are green. Allowed Boolean operators
are and, or and ! (for not). For example,

x = true and (!(Environment.y = a) or z > 3)

is an acceptable Boolean formula for red states, assuming y is defined as a local observable variable.

Definition of actions

All actions of an agent are defined in the section Actions:

Actions = { a1, b2, c3};

Definition of protocol function

A line in a protocol function is composed of a condition, which is a Boolean formula over local states, and a list
of actions. The condition represents all local states that satisfy the condition and the list of actions allowed to
be performed in local states specified by the condition. In this example:

x = true and Environment.z < 2 : { a1, a3};

x = true and Environment.z < 2 is the condition and {a1, a3} is the list of actions. The conditions appearing
in different lines do not need to be mutually exclusive, i.e., the conjunction of any two conditions does not need
to be false. If this is the case, the agent has non-deterministic behaviour and all actions are considered possible
by MCMAS.

For an agent that has many local states, it might be unrealistic or even impossible to specify actions for
every state. MCMAS includes the reserved keyword Other:

Other : { action-list };

This item is optional, but it must be the last one in a protocol function if it is used. The keyword Other encodes
all states except those specified in any line appearing before it. This keyword is also useful if the same set of
actions is allowed in all local states. In this case, simply let the Other item be the only one in the protocol
function.
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Definition of the evolution function

There are two ways in ISPL to define evolution functions. The first way is chosen by defining the following
statement

Semantics=MultiAssignment;

before the definition of the environment. To choose the second, replace MultiAssignment by SingleAssignment

in the above statement. If no statement appears, the first way is used by default. Note that MultiAssignment
can be abbreviated to MA and SingleAssignment abbreviated to SA.

1. MultiAssignment. A line in an evolution function consists of a set of assignments of local variables
and an enabling condition, which is a Boolean formula over local variables, observable variables of the
Environment, and actions of all agents. An item is enabled in a state if its enabling condition is satisfied
in that state.

The left hand side (LHS) of an assignment is a local variable being assigned to a new value and the right
hand side (RHS) is a truth value or a Boolean local/observable variable if LHS is a Boolean variable, an
enumeration value or an enumeration local/observable variable if LHS is an enumerate variable, or an
arithmetic expression if LHS is a bounded integer variable. An arithmetic expression can contain local
variables and observable variables of bounded integer type. An observable variable must have a prefix
“Environment”, such as Environment.x. Multiple assignments can be connected by the keyword and.

In an enabling condition, all observable variable must have the prefix “Environment”. A proposition over
actions is of the form XXX.Action = xxx, where XXX is the name of an agent and xxx is one of its actions.

This is a possible line of an evolution function:

x=true and z=Environment.z+1 if y=b and TestAgent.Action=a1;

This is read as: “in the next step, the value of x is true and the value of z is equal to the (current) value
of z for the Environment if the current value of y is b and TestAgent is performing action a1”

2. SingleAssignment. This way is similar to the first one except that only one assignment is allowed in
each evolution line.

Although the deference on syntax in these two ways seems trivial, it has big impact on the generation of
the transition relation. In MultiAssignment, all evolution items in the same function are mutually excluded,
which means that if an item is enabled in a state, its execution updates the set of variables according its set of
assignment and keeps all other local variables unchanged. In SingleAssignment, evolution items in one function
are partitioned into groups such that two items belong to the same partition if and only if they update the same
variable. The execution of an item only updates the variable according its assignment. In the meantime, other
local variables can be updated by items in other partitions.

The example in Table 3.1 demonstrates the subtle difference between two semantics. Consider the following
initial state:

(Environment.a = 2, T estAgent.a = 2, T estAgent.b = 3, T estAgent.c = 2).

In MultiAssignment, it has three possible successor states:

(Environment.a = 3, T estAgent.a = 3, T estAgent.b = 3, T estAgent.c = 2),

(Environment.a = 3, T estAgent.a = 2, T estAgent.b = 3, T estAgent.c = 3),

(Environment.a = 3, T estAgent.a = 2, T estAgent.b = 4, T estAgent.c = 2).

This means variables a, b and c are updated separately. In SingleAssignment, it has only one successor state:

(Environment.a = 3, T estAgent.a = 3, T estAgent.b = 4, T estAgent.c = 3),

which means a, b and c are updated simultaneously. Further, the formula in the example is true with
MultiAssignment, while false with SingleAssignment.
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Table 3.1: ISPL snippet for different semantics.

Agent Environment

Vars: a: 1..3; end Vars

Actions = {none};

Protocol: Other: {none}; end Protocol

Evolution:

a = 2 if a = 1;

a = 3 if a = 2;

a = 1 if a = 3;

end Evolution

end Agent

Agent TestAgent

Vars:

a: 1..3;

b: 2..4;

c: 2..3;

end Vars

Actions = {none};

Protocol:

Other: {none};

end Protocol

Evolution:

b = 3 if b = 2;

b = 4 if b = 3;

b = 2 if b = 4;

a = 2 if a = 1;

a = 3 if a = 2;

a = 1 if a = 3;

c = 2 if c = 3;

c = 3 if c = 2;

end Evolution

end Agent

Evaluation

a_b if Environment.a=TestAgent.b;

end Evaluation

InitStates

Environment.a=TestAgent.a and

!(TestAgent.a = TestAgent.b) and

!(TestAgent.b=TestAgent.c);

end InitStates

Formulae

EF a_b;

end Formulae

Definition of evaluation function

An evaluation function consists of a group of atomic propositions, which are defined over global states. Each
atomic proposition is associated with a Boolean formula over local variables of all agents and observable variables
in the Environment. The proposition is evaluated to true in all the global states that satisfy the Boolean formula.
Every variable involved in the formula has a prefix indicating the agent the variable belongs to. An example of
defining an atomic proposition is shown below:

happy if Environment.x = true and TestAgent.z < Environment.z;

where happy is an atomic proposition and if is a keyword.

Definition of initial states

Initial states are defined by a Boolean formula over variables, exactly like a Boolean formula for an atomic
proposition. However, each proposition in the Boolean formula has only the following forms:

XXX.x = xxx

where XXX is a normal agent or the Environment, x is a variable of XXX and xxx is a truth value, an enumeration
value or an integer, depending on the type of the variable; or

XXX.x = YYY.y

where XXX and YYY are normal agents or the Environment, x is a variable of XXX and y is a variable of YYY. In
the latter form, x and y must have the same type and domain. For simplicity, arithmetic expressions are not
allowed in the first form. The following are two examples:

Environment.x = false and Environment.y = a and

TestAgent.x = true and TestAgent.z = 1;

Environment.x = TestAgent.x;

Definition of groups

Groups are used in formulae involving group modalities. A group includes one or more agents, including the
Environment, such as

g1 = { TestAgent, Environment };
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Definition of fairness formulae

A fairness formula is a Boolean formula over atomic propositions defined in Section 3.2.1. Besides Boolean
operators and, or and !, operator − > is also allowed in fairness formulae and in formulae defined in Section 3.2.1.
Below is an example:

happy and ! dead;

where happy and dead are atomic propositions. Notice that this section can contain a list of formulae.

Definition of formulae to be checked

A formula to be verified is defined over atomic proposition. It can have one of the following forms:
formula ::= ( formula )
| formula and formula
| formula or formula
| ! formula
| formula −> formula
| AG formula
| EG formula
| AX formula
| EX formula
| AF formula
| EF formula
| A ( formula U formula )
| E ( formula U formula )
| K ( AgentName , formula )
| GK ( GroupName , formula )
| GCK ( GroupName , formula )
| DK ( GroupName , formula )
| O ( AgentName , formula )
| < GroupName > X formula
| < GroupName > F formula
| < GroupName > G formula
| < GroupName > ( formula U formula )
| AtomicProposition

In the above definition, AgentName is the name of a normal agent or the Environment, GroupName is the name of
a group defined in Section 3.2.1, AtomicProposition is an atomic proposition defined in Section 3.2.1 or a build-
in atomic proposition: AgentName.GreenStates or AgentName.RedStates for every agent, where RedStates

holds on all red states of the agent and GreenStates on all green states.

Notes

1. All sections in the Environment can be left empty if they are not needed;

2. Section RedStates in any normal agent can be left empty if all local states are green;

3. Section Groups can be left empty if no group is used by any formula being checked;

4. Section Fairness can be left empty if fairness conditions are not required.

5. All empty sections, even the environment, can be removed.

3.2.2 Counterexample/witness generation

When a formula beginning with A quantifier does not hold in a model, a counterexample execution will be
presented to demonstrate how the formula is violated in the model. Similarly, a witness execution will be com-
puted if a formula beginning with E quantifier holds in a model. MCMAS can compute counterexample/witness
executions for mixed A and E in the following cases:
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• Subformulas with E quantifier can appear in a formula beginning with A. However, MCMAS treats such
a subformula as a whole, i.e., it will stop at a state where the subformula holds. For example, if AF EG
φ does not hold, a circular path in which AF ¬φ holds in every state will be computed, but MCMAS
does not generate path(s) for AF φ. On the other hand, if AF AG φ does not hold, a circular path will
be computed as before. Then for each state in the path, a new path starting at the state is computed
showing EF ¬φ.

• Subformulas with A quantifier can appear in a formula beginning with E. For instance, EF AG φ. If this
formula holds, a path leading to a state where AG φ is returned by MCMAS. Consider EF EG φ as a
comparison. MCMAS will compute a path in a lasso shape, in which φ holds in every state of the loop.

• MCMAS is able to compute a counterexample for a Boolean combination of formulas beginning with A
or a witness for a Boolean combination of formulas beginning with E.

3.2.3 Reserved keywords

"--".*

"Semantics"

"MultiAssignment"

"SingleAssignment"

"MA"

"SA""Agent"

"RedStates"

"GreenStates"

"Actions"

"Action"

"Protocol"

"Evolution"

"Evaluation"

"InitStates"

"Groups"

"Fairness"

"Formulae"

"end"

"Environment"

"Obsvars"

"Lobsvars"

"Vars"

"boolean"

"true"

"false"

"Other"

"("

")"

"{"

"}"

"<"

">"

"<="

">="

"<>"

"if"

"="

"and"

"or"

"->"

"AG"

"EG"

"AX"

"EX"

"X"

"F"

"G"

"AF"

"EF"

"A"

"E"

"U"

"K"

"GK"

"GCK"

"O"

"DK"

"!"

":"

","

"."

";"

".."

"-"

"+"

"*"

"/"

"|"

"&"

"~"

"^"

3.2.4 The grammar

/* Interpreter System */
is ::= semantics? environment? agents+ evaluation istates groups? fairformulae? formulae

/* AGENT ENVIRONMENT */
environment ::= Agent Environment obsvardef? envvardef? enreddef? envactiondef envprotdef envevdef
end Agent

/* Observable variables */
obsvardef ::= Obsvars : onevardef* end Obsvars
onevardef ::= ID : boolean ;
| ID : integer .. integer ;
| ID : { enumlist } ;

enumlist ::= ID | enumlist, ID
integer ::= NUMBER | - NUMBER

/* Non-observable variables in Environment */
envvardef ::= Vars : onevardef* end Vars
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/* Definition of red states */
enreddef ::= RedStates : (enlboolcond ;)? end RedStates

/* Definition of red states */
reddef ::= RedStates : (lboolcond ;)? end RedStates

/* ACTIONS in Environment */
envactiondef ::= Actions = { ID* } ;

/* PROTOCOL in Environment */
envprotdef ::= Protocol : enprotdeflist? otherbranch? end Protocol
enprotdeflist ::= enprotline | enprotdeflist enprotline
enprotline ::= enlboolcond : { ID+ } ;
otherbranch ::= Other : { ID+ } ;

/* Boolean conditions for protocols in environment*/
enlboolcond ::= ( enlboolcond )
| enlboolcond and enlboolcond
| enlboolcond or enlboolcond
| ! enlboolcond
| expr4 logicop expr4

/* Boolean conditions for protocols */
lboolcond ::= ( lboolcond )
| lboolcond and lboolcond
| lboolcond or lboolcond
| ! lboolcond
| expr5 logicop expr5

/* Bit expression for Environment */
expr4 ::= expr4 | term4
| expr4 ^ term4
| term4

term4 ::= term4 & factor4
| factor4

factor4 ::= ~ element4
| element4

element4 ::= ( expr4 )
| expr1

/* Arithmetical expression for Environment */
expr1 ::= expr1 + term1
| expr1 - term1
| term1

term1 ::= term1 * element1
| term1 / element1
| element1

element1 ::= ( expr1 )
| varvalue1

logicop ::= < | <= | > | >= | = | !=

/* Variable values (not allow prefix like ID. ID) */
varvalue1 ::= boolvalue | ID | integer
boolvalue ::= true | false
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/* EVOLUTION DEFINITION for Environment */
envevdef ::= Evolution : envevline* end Evolution
envevline ::= boolresult if eboolcond ;
boolresult ::= ( boolresult )
| boolresult and boolresult
| ID = expr4

/* Boolean conditions for Environment’s evolution function */
eboolcond ::= ( eboolcond )
| eboolcond and eboolcond
| eboolcond or eboolcond
| ! eboolcond
| expr4 logicop expr4
| Action = ID
| ID . Action = ID

/* Agents */
agents ::= agent | agents agent
agent ::= Agent ID lobsvardef? vardef reddef? actiondef protdef evdef end Agent

/* LOCAL OBSERVABLE VARIABLES */
lobsvardef ::= Lobsvars = { ID* } ;

/* Non-observable variables */
vardef ::= Vars : onevardef+ end Vars

/* ACTIONS */
actiondef ::= Actions = { ID+ } ;

/* PROTOCOL */
protdef ::= Protocol : protdeflist end Protocol
| Protocol : protdeflist otherbranch end Protocol
| Protocol : otherbranch end Protocol

protdeflist ::= protline | protdeflist protline
protline ::= lboolcond : { enabledidlist } ;

/* EVOLUTION DEFINITION for normal agents*/
evdef ::= Evolution : evline+ end Evolution
evline ::= boolresult1 if gboolcond ;
gboolcond ::= ( gboolcond )
| gboolcond and gboolcond
| gboolcond or gboolcond
| ! gboolcond
| expr5 logicop expr5
| Action = ID
| ID . Action = ID
| Environment . Action = ID

boolresult1 ::= ( boolresult1 )
| boolresult1 and boolresult1
| ID = expr5

/* Bit expression for Environment */
expr5 ::= expr5 | term5
| expr5 ^ term5
| term5

term5 ::= term5 & factor5
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| factor5
factor5 ::= ~ element5
| element5

element5 ::= ( expr5 )
| expr2

/* Arithmetical expression for normal agents */
expr2 ::= expr2 + term2
| expr2 - term2
| term2

term2 ::= term2 * element2
| term2 / element2
| element2

element2 ::= ( expr2 )
| varvalue2

/* Variable values (add Environment.ID) */
varvalue2 ::= boolvalue | ID | Environment . ID | integer

/* EVALUATION */
evaluation ::= Evaluation evaline+ end Evaluation
evaline ::= ID if evaboolcond ;
evaboolcond ::= ( evaboolcond )
| evaboolcond and evaboolcond
| evaboolcond or evaboolcond
| ! evaboolcond
| expr6 logicop expr6

/* Bit expression for Environment */
expr6 ::= expr6 | term6
| expr6 ^ term6
| term6

term6 ::= term6 & factor6
| factor6

factor6 ::= ~ element6
| element6

element6 ::= ( expr6 )
| expr3

/* Arithmetical expression for evaluation function */
expr3 ::= expr3 + term3
| expr3 - term3
| term3

term3 ::= term3 * element3
| term3 / element3
| element3

element3 ::= ( expr3 )
| varvalue3

/* Variable values for evaluation function */
varvalue3 ::= boolvalue | ID | ID . ID | Environment . ID | integer

/* INITIAL STATES */
istates ::= InitStates isboolcond ; end InitStates
isboolcond ::= ( isboolcond )
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| isboolcond and isboolcond
| isboolcond or isboolcond
| ! isboolcond
| ID . ID = varvalue4
| Environment . ID = varvalue4
| ID . ID = ID . ID
| Environment . ID = ID . ID
| ID . ID = Environment . ID
| Environment . ID = Environment . ID

/* Groups */
groups ::= Groups groupline? end Groups
groupline ::= ID = { agentname+ } ;
agentname ::= Environment | ID

/* FAIRNESS FORMULAE */
fairformulae ::= Fairness fformula* end Fairness
fformula ::= ( fformula )
| fformula and fformula
| fformula or fformula
| ! fformula
| fformula −> fformula
| AG fformula
| EG fformula
| AX fformula
| EX fformula
| AF ffformula
| EF fformula
| A ( fformula U fformula )
| E ( fformula U fformula )
| K ( ID , fformula )
| K ( Environment , fformula )
| GK ( ID , fformula )
| GCK ( ID , fformula )
| O ( ID , fformula )
| O ( Environment , fformula )
| DK ( ID , fformula )
| ID
| ID . GreenStates
| ID . RedStates
| Environment . GreenStates
| Environment . RedStates

/* FORMULAE TO CHECK */
formulae ::= Formulae formlist end Formulae
formlist ::= formula ; | formlist formula ;
formula ::= ( formula )
| formula and formula
| formula or formula
| ! formula
| formula −> formula
| AG formula
| EG formula
| AX formula
| EX formula
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| AF formula
| EF formula
| A ( formula U formula )
| E ( formula U formula )
| K ( ID , formula )
| K ( Environment , formula )
| GK ( ID , formula )
| GCK ( ID , formula )
| O ( ID , formula )
| O ( Environment , formula )
| DK ( ID , formula )
| < ID > X formula
| < ID > F formula
| < ID > G formula
| < ID > ( formula U formula )
| ID
| ID . GreenStates
| ID . RedStates
| Environment . GreenStates
| Environment . RedStates

3.3 The graphical interface

The graphical interface is installed by copying the file
org.mcmas.ui_1.0.0.jar

into the plugin/ directory under your Eclipse installation. The version available online has been tested with
Eclipse 3.2, 3.3 and 3.4, with Java 1.7, and with Linux, Mac, and Windows operating systems. If you have
problems with the plugin, please contact us.

Initial configuration: once the plugin is installed, it needs to be configured by specifying the directory
locations of MCMAS, DOT (http://www.graphviz.org) and (optional, only if you are using MCMAS under
windows) of Cygwin. This is done by accessing the general “Preferences” of Eclipse, as in Figure 3.1.

Once the plugin is installed correctly, it is possible to create a new MCMAS project using the wizard, by
selecting File -> New -> Other, and then MCMAS project (see Figure 3.2).

The new project creates an empty file with the initial structure of an ISPL file. The file can be renamed
and it should be completed with all the necessary information required by the grammar. Syntax errors are
underlined and contextual help is provided to fix them (see Figure 3.3).

Verifications, simulations, and counter-examples analysis can be performed from this graphical interface:
Running a simulation. To run a simulation, select the desired method from the drop-down MCMAS menu

(see Figure 3.4) (symbolic interactive mode is more appropriate for large examples). Click the appropriate tab
under the editor window to access the correct pane and simply follow the instructions displayed to move forward
and backward in a simulation.

Performing verification. Verification of the fomulae in an ISPL file is performed by selecting “Launch
verification” from the MCMAS drop down menu. The results of the verification are available by clicking on the
“Model Checking” tab at the bottom of the editor window (see Figure 3.5).

Analysing counter-examples. It is possible to analyse witness and counterexample executions by clicking
on “Show counterexample/witness” from the verification window. A directed graph illustrates the execution
and a description of the states is available on the right-hand side of the window. Temporal transitions are
represented by a black arrow labelled with the joint action performed. Epistemic transitions are represented
by a red arrow labelled with the appropriate name of the agent (or group of agents) for the relation. When
mouse cursor moves into a node in the graph, the corresponding state is shown in highlight. Some agents can be
projected out from the state descriptions by unchecking the unwanted agents’ name and then clicking “apply”.
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Figure 3.1: The MCMAS preference tab.
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Figure 3.2: The MCMAS project wizard.
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Figure 3.3: The ISPL editor for an empty file.

Figure 3.4: Running a simulation.
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Figure 3.5: Verification results.

Figure 3.6: A counter-example.
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3.4 Theoretical background: the semantics of interpreted systems

This section is extracted from [7] and only slightly modified to introduce the notion of “public” (or “observable”)
local states for the environment.

The formalism of interpreted systems was introduced in [5] to model a system of agents and to reason about
the agents’ epistemic and temporal properties. In this formalism, each agent is modelled using a set of local
states, a set of actions, a protocol, and an evolution function.

• The set of local states1 for an agent i is denoted by the symbol Li. Elements of Li capture the “private”
information of an agent and, at any given time, local states represent the state in which an agent is (e.g.
ready and busy may be elements of Li). Contrary to [5], it is assumed that the set Li is finite (this is
required by the model checking algorithms).

• The set of actions for an agent i is denoted by the symbol Acti. Elements of Acti represent the possible
actions that an agent is allowed to perform. Differently from local states, actions are “public”. Similarly
to local states, here the set Acti is assumed to be finite.

• The protocol for an agent i is denoted by the symbol Pi. The protocol is a “rule” establishing which actions
may be performed in each local state. The protocol Pi is modelled by a function Pi : Li → 2Acti , assigning
a set of actions to a local state. Intuitively, this set corresponds to the actions that are enabled in a given
local state. Notice that this definition may enable more than one action to be performed for a given local
state. When more than one action is enabled, it is assumed that an agent selects non-deterministically
which action to perform.

• The evolution function for agent i is denoted by the symbol ti (notice: [5] define a single evolution function
t for all the agents, see discussion below). The evolution function determines how local states “evolve”,
based on the agent’s local state, on other agents’ actions, and on the public local state of a special
agent used to model the environment (see below). The evolution function is modelled by a function
ti : Li ×Act1 × . . .×Actn ×ActE → Li, where n is the number of agents in the system.

A special agent E is used to model the environment in which the agents operate. Similarly to the other
agents, E is modelled using a set of local states LE , a set of actions ActE , a protocol PE , and an evolution
function tE . As mentioned above, part of the local states of E are “public”, i.e. LE = LEi

P
× LEi

R
, where LEi

P

denotes the set of “public” local states of E for agent i, and LEi
R

denotes the set of “private” local states of E.
So all the remaining agents may have a different view of the environment to determine their protocol, temporal
evolution, and the epistemic accessibility relations of the agents.

For all agents including the environment, the sets Li and Acti are assumed to be non-empty, and the number
n ∈ IN of agents is assumed to be finite. For convenience, the symbol Act denotes the Cartesian product of the
agents’ actions, i.e., Act = Act1 × . . . × Actn × ActE . An element α ∈ Act is a tuple of actions (one for each
agent) and is referred to as a joint action. The Cartesian product of the agents’ local states is denoted by S,
i.e., S = Li × . . .× Ln × LE . An element g ∈ S is called a global state; given a global state g, the symbol li(g)
denotes the local state of agent i in the global state g; we write lEi

P
(g) to denote the “public” component of

lE(g) for agent i. It is assumed that, in every state, agents evolve simultaneously (notice that this requirement
is similar to the definition of Moore synchronous game structures: see [7]).

The definition of a single evolution function t : S×Act→ S presented in [5] differs slightly from the definition
of n + 1 evolution functions presented here. The two definitions are, in fact, equivalent: t(g, a) = g′ iff, for all
i ∈ {1, . . . , n}, ti(li(g), a) = li(g

′) and tE(lE(g), a) = lE(g′) (the decomposition from a single t to n+ 1 “local”
transition functions is guaranteed to be possible by the assumptions on t). This choice is motivated by the fact
that the definition of an evolution function for each agent helps to keep the description of the system compact.

Given a set of initial global states I ⊆ S, the protocols and the evolution functions generate a set of reachable
global states G ⊆ S, obtained by all the possible runs of the system. A set of atomic propositions P and an
evaluation relation V ⊆ P × S are introduced to complete the description of an interpreted system. Formally,
given a set of n agents {1, . . . , n}, an interpreted system is a tuple:

IS =
〈

(Li, Acti, Pi, ti)i∈{1,...,n} , (LE , ActE , PE , tE) , I, V
〉
.

1Here we mean extended local states, which include “public” information in the environment that can be observed by the agent.
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It has been shown in [5] that interpreted systems can provide a semantics to reason about time and epistemic
properties, by means the following language:

φ ::= p | ¬φ | φ ∨ φ | EXφ | EGφ | E[φUψ] | Kiφ | EΓφ | CΓφ | DΓφ

〈〈Γ〉〉Xφ | 〈〈Γ〉〉Gφ | 〈〈Γ〉〉[φUψ

In this grammar, p ∈ P is an atomic proposition, and the operators EX,EG, and EU are the standard CTL
operators [4]; the remaining CTL operators EF,AX,AG,AU,AF can be derived in a standard way. The
formula Kiφ (i ∈ {1, . . . , n}) is read as “agent i knows φ”. The symbol Γ denotes a group of agents. The
formula EΓφ is read as “everybody in group Γ knows φ”; the formula CΓφ is read as “φ is common knowledge
in group Γ” (intuitively, common knowledge of φ in a group of agents denotes the fact that everyone knows φ,
and everyone knows that everybody else knows φ); the formula DΓφ is read as “φ is distributed knowledge in
group Γ” (intuitively, distributed knowledge in a group of agents is the knowledge obtained by “sharing” all
agents’ knowledge). The formula 〈〈Γ〉〉Xφ is read as “the agents in group Γ can enforce a next state in which
φ holds” or, equivalently, “group Γ has a strategy to enforce Γ in the next state”. Similarly, 〈〈Γ〉〉Gφ is read as
“group Γ has a strategy to enforce a sequence of states in which φ holds globally”, and 〈〈Γ〉〉[φUψ] is read as
“group Γ can enforce a sequence of states in which ψ eventually holds, and φ holds until then”. As in the case
of CTL, the operator F can be used as an abbreviation for 〈〈Γ〉〉[>Uφ].

Given an interpreted system IS , it is possible to associate a Kripke model [5] MIS = (W,Rt,∼1, . . . ,∼n, V )
to IS ; the model MIS can be used to interpret formulae of the grammar above. The model MIS is obtained as
follows:

• The set of possible worlds W is the set G of reachable global states (this is to avoid the epistemic
accessibility of states which cannot reached using the temporal relation).

• The temporal relation Rt ⊆W ×W relating two worlds (i.e., two global states) is defined by the temporal
transition ti. Two worlds w and w′ are such that wRtw

′ iff there exists a joint action a ∈ Act such
that t(g, a) = g′, where t is the transition relation of IS obtained by the composition of the functions ti,
i ∈ {1, . . . , n} and tE .

• The epistemic accessibility relations ∼i⊆ W ×W are defined by imposing the equality of the local com-
ponents (for i and for the “public” part of E) of the global states. Formally, two worlds w,w′ ∈ W are
such that w ∼i w

′ iff li(w) = li(w
′) and lEP

(w) = lEP
(w′) (i.e., two worlds w and w′ are related via the

epistemic relation ∼i when the local states of agent i in global states w and w′ are the same [5], and the
“public” or “observable” part of the Environment local states are the same).

• The evaluation relation V ⊆ AP ×W is the evaluation relation of IS .

Similarly to [4], let π = (w0, w1, . . .) be an infinite sequence of worlds such that, for all i, wiRtwi+1, and let
π(i) denote the i-th world in the sequence (the temporal relation is assumed to be serial and thus all computation
paths are infinite). Let RE

Γ ⊆W ×W denote the relation obtained by taking the union of the epistemic relations
for the agents in Γ, i.e., RE

Γ =
⋃
i∈Γ

∼i. Let RD
Γ denote the intersection of the epistemic relations for the agents

in Γ, i.e., RD
Γ =

⋂
i∈Γ

∼i. Let RC
Γ denote the transitive closure of RE

Γ . It is written MIS , w |= φ when a formula φ

is true at a world w in the Kripke model MIS , associated with an interpreted system IS . Satisfaction is defined
inductively as follows:
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mc(K(φ, i, IS)) {
X = mc(¬φ, IS);
Y = {g ∈ G | ∃g′ ∈ X s.t. g ∼i g

′}
return ¬Y ∩G;
}

Figure 3.7: Algorithm for the verification of Ki(φ).

mc(E(φ,Γ, IS)) {
X = mc(¬φ, IS);
Y = {g ∈ G | ∃g′ ∈ X ∧ ∃i ∈ Γ s.t. g ∼i g

′}
return ¬Y ∩G;
}

Figure 3.8: Algorithm for the verification of EΓ(φ).

MIS , w |= p iff (p, w) ∈ V ,
MIS , w |= ¬φ iff MIS , w 6|= φ,
MIS , w |= φ1 ∨ φ2 iff MIS , w |= φ1 or MIS , w |= φ2,
MIS , w |= EXφ iff there exists a path π such that π(0) = w,

and MIS , π(1) |= φ,
MIS , w |= EGφ iff there exists a path π such that π(0) = w,

and MIS , π(i) |= φ for all i ≥ 0,
MIS , w |= E[φUψ] iff there exists a path π such that π(0) = w, and there exists

k ≥ 0 such that MIS , π(k) |= ψ, and MIS , π(j) |= φ
for all 0 ≤ j < k,

MIS , w |= Kiφ iff for all w′ ∈W , w ∼i w
′ implies MIS , w

′ |= φ,
MIS , w |= EΓφ iff for all w′ ∈W , wRE

Γw
′ implies MIS , w

′ |= φ,
MIS , w |= CΓφ iff for all w′ ∈W , wRC

Γw
′ implies MIS , w

′ |= φ,
MIS , w |= DΓφ iff for all w′ ∈W , wRD

Γ w
′ implies MIS , w

′ |= φ,
MIS , w |= 〈〈Γ〉〉Xφ iff w ∈ preΓ(φ)
MIS , w |= 〈〈Γ〉〉Gφ iff MIS , w |= φ and for all paths π from w and,

for all states wi, wi+1 of π, MIS , wi+1 |= phi and wi ∈ preΓ(φ)
MIS , w |= 〈〈Γ〉〉[φUψ] iff for all temporal paths π starting from w, the agents in

Γ may perform joint actions along the paths s.t. eventually
ψ will hold and φ holds along the paths until then.

where preΓ(φ)

is the set of states defined by preΓ(φ) = {w ∈ W |∃a ∈ ActΓ s.t. ∀a′ ∈ ActΣ\Γ all temporal transitions labelled
with the < a, a′ > lead to a state w′ s.t. MIS , w

′ |= φ.
Similarly to standard Kripke models, a formula φ is true in a model, written MIS |= φ, if MIS , w |= φ for all

w ∈W .
A formula φ is true in an interpreted system IS , denoted by IS |= φ, iff it is true in the associated Kripke

model ([5], p. 111).

3.4.1 Verification algorithms

In this section we list the pseudo-algorithms for the verification of the non-temporal modalities. The algorithms
extend the standard OBDD-based algorithms for CTL. We refer to the source code for the details of the
implementation and to Figures from 3.7 to 3.12 for an overview.

1A joint action a for a group of agents Γ is a tuple belonging to the set ActΓ, where ActΓ is the Cartesian product ActΓ =
∏
i∈Γ

ai.

Given two joint actions a ∈ ActΓ and a′ ∈ ActΣ\Γ, < a, a′ >∈ Act is the joint action obtained by the concatenation of a and a′

(with the appropriate reordering of terms, if needed).

31



mc(D(φ,Γ, IS)) {
X = mc(¬φ, IS);
Y = {g ∈ G | ∃g′ ∈ X s.t. ∀i ∈ Γ, g ∼i g

′}
return ¬Y ∩G;
}

Figure 3.9: Algorithm for the verification of DΓ(φ).

mc(C(φ,Γ, IS )) {
Y = mc(¬φ, IS );
X = G;
while ( X != Y ) {

X = Y;
Y = {g ∈ G|∃g′ ∈ X ∧ ∃i ∈ Γ s.t. g ∼i g

′}
}
return ¬ Y ∩G;
}

Figure 3.10: Algorithm for the verification of common knowledge (CΓφ).

mc(O(φ, i, IS)) {
X = mc(¬φ, IS);
Y = {g ∈ G | ∃g′ ∈ X s.t. gRO

i g
′}

return ¬Y ∩G;
}

Figure 3.11: Algorithm for the verification of correct behaviour (Oi(φ)).

mc(〈〈Γ〉〉X(φ, IS)) {
Y = {g ∈ G|(∃a ∈ ActΓ, g′ ∈ G) s.t. (∀b ∈ Act{1,...,n}\Γ).[Rt(g, g

′) and t(g, (a ∪ b), g′)
and g′ ∈mc(φ, IS) and (a ∪ b) is consistent with the protocols in g]}

return Y ;
}

Figure 3.12: Algorithm for the verification of a strategy for the “next” state (the algorithms for G and U are
obtained as a fixed point in the standard way).
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